skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ruan, Zhiyuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cyber-physical systems (CPS) increasingly require real-time, high bandwidth data communication and processing. To address this, Time Sensitive Networking (TSN) provides latency-bounded data trans- mission at one or more gigabits-per-second throughput. However, it does not commonly connect directly to I/O devices, such as sensors and ac- tuators. In contrast, Universal Serial Bus (USB) is ubiquitous for device I/O, but has yet to be widely adopted for host-to-host networking. This paper considers the use of a common USB software stack for both device I/O and host-to-host communication. We compare against a sys- tem using USB for device I/O and TSN for host-level networking. Our findings show that a unified approach using USB results in reduced soft- ware complexity, simplified bus coordination, and more effective miti- gation of priority inversion when transferring data across multiple bus segments. Experiments show that end-to-end latency is within expected delay bounds, and is reduced if the same USB software stack is used for all communication with a given host. This suggests that bridging chal- lenges exist in current systems, which are solved by either extending a high-bandwidth bus such as TSN to support device I/O, or enhancing USB with improved networking capabilities. 
    more » « less
    Free, publicly-accessible full text available November 5, 2026
  2. Cyber-physical systems (CPS) increasingly require real-time, high bandwidth data communication and processing. To address this, Time Sensitive Networking (TSN) provides latency-bounded data transmission at one or more gigabits-per-second throughput. However, it does not commonly connect directly to I/O devices, such as sensors and actuators. In contrast, Universal Serial Bus (USB) is ubiquitous for device I/O, but has yet to be widely adopted for host-to-host networking. This paper considers the use of a common USB software stack for both device I/O and host-to-host communication. We compare against a system using USB for device I/O and TSN for host-level networking. Our findings show that a unified approach using USB results in reduced software complexity, simplified bus coordination, and more effective mitigation of priority inversion when transferring data across multiple bus segments. Experiments show that end-to-end latency is within expected delay bounds, and is reduced if the same USB software stack is used for all communication with a given host. This suggests that bridging challenges exist in current systems, which are solved by either extending a high-bandwidth bus such as TSN to support device I/O, or enhancing USB with improved networking capabilities. 
    more » « less
    Free, publicly-accessible full text available November 5, 2026